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ABSTRACT 
This paper introduced a new accelerated Genetic Algorithms (GAs) method to find a numerical solutions of stochastic 

Partial differential equations driven by space-time white nose wiener process . The numerical scheme is based on a 

representation of the solution of the equation involving a stochastic part arising from the noise and a deterministic 

partial differential equation . By using Doss-Sussmann transformation that enables us to work with a partial 

differential equation instead of the stochastic partial differential equation. Then compare these solutions obtained by 

our method with saul'yev method and deterministic solution. 
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     INTRODUCTION
In this paper  we want to take a quicker look at the numerical solutions for stochastic partial differential equations 

(SPDEs). Working on the numerical solutions for SPDEs we face many difficulties. On the one hand we have to 

consider problems known from numerically solving deterministic partial differential equations. On the other hand we 

are faced with problems triggered by numerically solving stochastic ordinary differential equations (SODEs). And 

additionally new issues arise resulting from the infinite dimensional nature of the underlying noise processes ,[1]. 

 

Stochastic partial differential equations  (SPDEs) are used as a model in many applications. This area of mathematics 

is especially motivated by the need to describe random phenomena studied in natural sciences like physics, chemistry, 

biology, and in control theory, [2]. So, we can define SPDEs, by combine deterministic partial differential equations 

with some kind of noise.  

 

Consider the SPDE with space-time white noise ,[4]. 

𝑑𝑢(𝑡, 𝑥) = 𝑢𝑥𝑥(𝑡, 𝑥)𝑑𝑡 + 𝑔(𝑢(𝑡, 𝑥))𝑑𝑊(𝑡, 𝑥)                     (1) 

with  0 < 𝑥 < 1 , and  

𝑢(0, 𝑥) = 𝑢0  , 𝑢(𝑡, 0) = 𝑢(𝑡, 1) = 0  , 𝑎𝑛𝑑  𝑢𝑡(𝑡, 0) = 𝑢𝑡(0,1) = 0 

Then , two different ways of writing this equation (1) are : 

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
+ 𝑔(𝑢)

𝜕2𝑊

𝜕𝑡𝜕𝑥
                                                           (2) 

or 

𝑑𝑢 = 𝑢𝑥𝑥𝑑𝑡 + ∑ 𝑔(𝑢)ℎ𝑘(𝑥)𝑑𝑊𝑘(𝑡)

∞

𝑘=1

                                 (3) 

Such that , three kinds of space-time white noise as in [4] are : 

 

 Brownian Sheet – 𝑊(𝑡, 𝑥) = 𝜇([0, 𝑇] × [0, 𝑥]) 

 Cylindrical Brownian motion – family of Gaussian random variables  
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𝐵𝑡  =  𝐵𝑡(ℎ) , ℎ ∈  𝐻 a Hilbert space, s.t. 

 𝐸[𝐵𝑡(ℎ)] = 0,       𝐸[𝐵𝑡(ℎ)𝐵𝑠(𝑔)] = 〈ℎ, 𝑔〉𝐻 (𝑡 ∧ 𝑠) 

 Space-time white noise  𝑑𝑊(𝑡, 𝑥)  =  
𝜕2𝑊

𝜕𝑡𝜕𝑥
 = ∑  ℎ𝑘(𝑥)𝑑𝑊𝑘(𝑡)∞

𝑘=1  , where {ℎ𝑘} is assumed a Basis of the 

Hilbert space we’re in , if {ℎ𝑘 , 𝑘 > 1} is a complete orthonormal system, then {𝐵𝑡(ℎ𝑘),   𝑘 > 1} independent 

standard Brownian motion. 

The connection between the three kinds: If 𝐻 = 𝐿2(ℝ) 𝑜𝑟 𝐻 = 𝐿2(0, 1), then 

𝐵𝑡(ℎ) = ∫
𝜕𝑊

𝜕𝑥
ℎ(𝑥)𝑑𝑥 

and  

𝐵𝑡(𝑥) = 𝐵𝑡(𝑋[0,𝑋]) = ∑ ∫ (ℎ𝑘(𝑦)𝑑𝑦𝑊𝑘(𝑡))
𝑥

0

∞

𝑘=1

= 𝑊(𝑡, 𝑥)               

where we assume that  

ℎ𝑘(𝑥) = √2 sin(𝑘𝜋𝑥)                                                                                         (4) 
Then we get equations of the form : 

𝑑𝑈(𝑡, 𝑥) = [𝒜𝑈(𝑡, 𝑥) + 𝑐(𝑥)𝑈(𝑡, 𝑥)]𝑑𝑡 + ∑ ℎ𝑙(𝑡)𝑈(𝑡, 𝑥)𝑑𝐵𝑡
𝑙

∞

𝑙=1

                (5) 

Or in integral form  

𝑈(𝑡, 𝑥) = 𝑈0(𝑥) + ∫ 𝒜𝑈(𝑠, 𝑥)𝑑𝑠

𝑡

0

+ ∫ 𝑐(𝑥)𝑈(𝑠, 𝑥)𝑑𝑠

𝑡

0

+ ∑ ∫ ℎ𝑙(𝑠)𝑈(𝑠, 𝑥)𝑑𝐵𝑠
𝑙

𝑡

0

𝑛

𝑙=1

   (6) 

For 0 ≤ 𝑡 ≤ 𝑇 . The process 𝐵 = (𝐵𝑡
𝑙 , … , 𝐵𝑡

𝑛)0≤𝑡≤𝑇 is an n-dimensional Brownian motion . The operator  𝒜 is defined 

as :  

𝒜𝑢 =
1

2
∑ 𝑎𝑖𝑗

𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗

𝑑

𝑖,𝑗=1

+ ∑ 𝑏𝑖

𝜕𝑢

𝜕𝑥𝑖

𝑑

𝑖=1

   , 𝑤𝑖𝑡ℎ 𝑎𝑖𝑗(𝑥) = ∑ 𝜎𝑖𝑘𝜎𝑗𝑘

𝑚

𝑘=1

              (7) 

Where the diffusion matrix 𝜎: ℝ𝒅  → ℝ𝒅×𝒎 and the drift coefficient 𝑏: ℝ𝒅  → ℝ𝒅 . the initial condition 𝑈0 , the 

functions  𝑐 , 𝜎 𝑎𝑛𝑑  𝑏 are suppose to be smooth functions of the space variable , (ℎ𝑙(𝑡))1≤𝑙≤𝑛 are bounded and holder 

continuous of order 1/2. Thus the equation (5) has a unique regular strong solution.  

 

In this paper, we focus on the stochastic heat equation. Thus, we simplify the above equation to : 

𝑑𝑈(𝑡, 𝑥) =  𝒜𝑈(𝑡, 𝑥)𝑑𝑡 +  𝒮(𝑈(𝑡, 𝑥))𝑑𝑊(𝑡, 𝑥)                                     (8) 

where 𝒮 is a multiplication operator of the form 

(𝒮(𝑣)𝑢)(𝑥) =  𝑏(𝑥, 𝑣(𝑥)). 𝑢(𝑥)   
       Taking a closer look at the noise in this equation we see that we can split it into two types, additive and 

multiplicative noise. We speak of additive noise if the operator 𝒮 is a constant operator and of multiplicative noise if 

𝒮 is not constant. 

      The objective of our work is to develop a numerical scheme for the random field 𝑈. The problem of numerical 

solutions of (5) has been studied by many authors with different approaches. The ideas that lead us to propose a new 

scheme are twofold. 

 On the one hand we wish to propose a numerical scheme that separates the noise 𝒮 from the second order 

operator 𝒜. This idea has been used in [2] ,[5]  in a filtering context in which the authors’ scheme first 

performs off-line a wide number of solutions of partial differential equations by the finite element method. 

The stochastic part of the simulation is done after this first step. 

 On the other hand we want to use the accelerated genetic algorithm method to find numerical solution for  

the partial differential equations that may appear in our scheme. 

 

In order to implement the above ideas, we need to introduce the d-dimensional Markov process X =  (Xt)0≤t≤T  whose 

infinitesimal generator is given by the second order operator in equation (7) . 

The Markov process 𝑋 is governed by infinitesimal generator 𝒜 of  the stochastic differential equation is : 
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𝑋𝑡 = 𝑥0 + ∫ 𝑏(𝑋𝑠)𝑑𝑠

𝑡

0

+ ∫ 𝜎(𝑋𝑠)

𝑡

0

𝑑𝑊𝑠   , 0 ≤ 𝑡 ≤ 𝑇                     (10) 

where the initial condition 𝑥0 in ℝ𝑑 . 
 
TYPES OF SOLUTIONS OF SPDES 
 Stochastic partial differential equations of the form  

𝑑𝑋𝑡(𝑥) = [𝒜𝑋𝑡 + 𝐹(𝑋𝑡)]𝑑𝑡 + 𝒮(𝑋𝑡)𝑑𝑊𝑡(𝑥)       , 𝑋(0) = 𝜉                (11) 
have different notions of solutions. As in [1] we find : 

 

Definition 1: 𝐷(𝒜)-valued predictable process 𝑋(𝑡) , 𝑡 ∈ [0 , 𝑇] is called an analytical strong solution of the problem 

(6) if  

𝑋(𝑡) = ∫[𝒜𝑋𝑠 + 𝐹(𝑋𝑠)]𝑑𝑠

𝑡

0

+ ∫ 𝒮(𝑋𝑠)𝑑𝑊𝑠

𝑡

0

       , 𝑃 − 𝑎. 𝑠.                 (12) 

In particular ,the integral in the right-hand side have to be well-define ,[1],[4]. 

 

Definition 2: H-valued predictable process 𝑋(𝑡) , 𝑡 ∈ [0 , 𝑇] is called an analytical weak solution of the problem (6) 

if  

< 𝑋(𝑡), 𝜁 >= ∫[< 𝑋(𝑠), 𝒜∗𝜁 > +< 𝐹(𝑋𝑠), 𝜁 >]𝑑𝑠

𝑡

0

+ ∫ < 𝜁, 𝒮(𝑋𝑠)𝑑𝑊𝑠 >

𝑡

0

 , 𝑃 − 𝑎. 𝑠. (13) 

For each 𝜁𝜖𝐷(𝒜∗) , in particular ,the integral in the right-hand side have to be well-define. 

 

Definition 3: H-valued predictable process 𝑋(𝑡) , 𝑡 ∈ [0 , 𝑇] is called an mild solution of the problem (6) if  

𝑋(𝑡) = ∫[𝑒 𝒜(𝑡−𝑠)𝐹(𝑋𝑠)]𝑑𝑠

𝑡

0

+ ∫ 𝑒 𝒜(𝑡−𝑠)𝒮(𝑋𝑠)𝑑𝑊𝑠

𝑡

0

       , 𝑃 − 𝑎. 𝑠.          (14) 

In particular ,the integral in the right-hand side have to be well-define,[1],[4]. 
 
STOCHASTIC INTEGRAL WITH RESPECT TO CYLINDRICAL WIENER PROCESS 
We denote by 𝐿0

2 = 𝐿2(𝑈0, 𝑌) the space of Hilbert-Schmidt operators acting from 𝑈0 into Y , and by 𝐿 = 𝐿(𝑈, 𝑌) , we 

denote the space of linear bounded operators from U into Y  ,[1],[4]. 

Let us consider the norm of the operator 𝜓 ∈ 𝐿2
0 : 

‖𝜓‖
𝐿0

2
2 = ∑ < 𝜓𝑔ℎ , 𝑓𝑘 >𝑌

2

∞

ℎ,𝑘=1

= ∑ 𝜆ℎ < 𝜓𝑒ℎ, 𝑓𝑘 >𝑌
2

∞

ℎ,𝑘=1

= ‖𝜓𝒬
1

2‖
𝐻𝑆

2

= 𝑡𝑟(𝜓𝒬𝜓∗) (15) 

Where 𝑔𝑖 = √𝜆𝑖𝑒𝑖  and {𝜆𝑖}, {𝑒𝑖} are eigenvalues and eigenfunctions of the operator 𝒬 ,  {𝑔𝑖}{𝑒𝑖} and {𝑓𝑖} are 

orthonormal bases of spaces 𝑈0, 𝑈 and 𝑌 , respectively. The space 𝐿2
0   is a separable Hilbert space with the norm  

‖𝜓‖
𝐿0

2
2 = 𝑡𝑟(𝜓𝒬𝜓∗)                              (16) 

In particular  

1.When 𝒬 = 𝐼 then 𝑈0 = 𝑈 and the space 𝐿0
2   becomes 𝐿2(𝑈, 𝑌) . 

2. When 𝒬 is a nuclear operator, that is 𝑡𝑟𝒬 < +∞, then 𝐿(𝑈, 𝑌 ) ⊂  𝐿2(𝑈0, 𝑌). For, assume that 𝐾 ∈ 𝐿(𝑈, 𝑌), 

that is 𝐾 is linear bounded operator from the space 𝑈 into 𝑌.  

 Let us consider the operator  𝜓 =  𝐾|𝑈0
 , that is the restriction of operator 𝐾 to the space 𝑈0, where 𝑈0 = 𝒬

1

2(𝑈) 

. Because 𝒬 is nuclear operator, then 𝒬
1

2  is Hilbert- Schmidt operator.  
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Proposition.1 the formula 

𝑊𝑐(𝑡) = ∑ 𝑔𝑗𝛽𝑗(𝑡)

∞

𝑗=1

     , 𝑡 ≥ 0                         (17) 

defines Wiener process in 𝑈1 with covariance operator 𝒬1 such that 𝑡𝑟𝒬1 < +∞ . 

 

Proposition.2 For any 𝑎 ∈  𝑈 the process  

< 𝑎, 𝑊𝑐(𝑡) >𝑈= ∑ < 𝑎, 𝑔𝑗 >𝑈 𝛽𝑗(𝑡)

∞

𝑗=1

        (18) 

is real-valued Wiener process and  

𝐸 < 𝑎, 𝑊𝑐(𝑡) >𝑈< 𝑏, 𝑊𝑐(𝑡) >𝑈= (𝑡 ∧ 𝑠) < 𝒬𝑎, 𝑏 >𝑈  , 𝑎, 𝑏 ∈ 𝑈 

Additionally, 𝐼𝑚𝒬1

1

2 = 𝑈0  and ‖𝑢‖𝑈0
= ‖𝒬1

−
1

2𝑢‖
𝑈1

. 

In the case when 𝒬 is nuclear operator, 𝒬
1

2  is Hilbert-Schmidt operator. Taking 𝑈1 =  𝑈, the process 𝑊𝑐(𝑡) , 𝑡 ≥ 0, 

defined by (17) is the classical Wiener process introduced. 

 

Definition.4 The process 𝑊𝑐(𝑡) , 𝑡 ≥ 0 , defined in (17), is called cylindrical Wiener process in 𝑈 when 𝑡𝑟𝒬1 < +∞. 

As shown in Fig.1 below . 

 

 
Fig.1 Cylindrical White noise with its distribution and spectral density 

 

The stochastic integral with respect to cylindrical Wiener process is defined as follows. As we have already written 

above, the process 𝑊𝑐(𝑡) , 𝑡 ≥ 0 defined by (10) is a Wiener process in the space 𝑈1 with the covariance operator 𝒬1 

such that 𝑡𝑟𝒬1 < +∞.  

Then the stochastic integral ,  

∫ 𝑔(𝑠)𝑑𝑊𝑐(𝑠)
𝑡

0

∈ 𝑌                           (19) 

where 𝑔(𝑠)  ∈ 𝐿(𝑈1, 𝑌), with respect to the Wiener process 𝑊𝑐(𝑡) is well defined on 𝑈1. 

We denote by 𝑁(𝑌 ) the space of all stochastic processes 

∅: [0, 𝑇] × Ω → 𝐿2[𝑈0, 𝑌]                    
Such that  

𝐸 (∫ ‖∅(𝑡)‖
𝐿2[𝑈0,𝑌]
2 𝑑𝑡

𝑇

0

) < +∞          (20) 

and for all 𝑢 ∈ 𝑈0 , ∅(𝑡)𝑢 is a Y-valued stochastic process measurable with respect to the 

filtration  ℱ𝑡. 

The stochastic integral  

∫ ∅(𝑠)𝑑𝑊𝑐(𝑠)
𝑡

0

∈ 𝑌 

 with respect to cylindrical Wiener process, given by (10) for any process ∅ ∈ 𝑁(𝑌) can be defined as the limit  
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∫ ∅(𝑠)𝑑𝑊𝑐(𝑠)
𝑡

0

= lim
𝑚→∞

∑ ∫ ∅(𝑠)𝑔𝑗𝑑𝛽𝑗(𝑠)
𝑡

0

𝑚

𝑗=1

    𝑖𝑛 𝑌      (21) 

In 𝐿2(Ω) sense . 
 
MATHEMATICAL SETTING AND ASSUMPTIONS ,[1] 
Let  𝑇 > 0 and let  (Ω, ℱ, Ρ) be a probability space with a normal filtration  ℱ𝑡 , 𝑡 ∈ [0, 𝑇] . in addition let (𝐻, <. , . >) 

be a separable Hilbert space with norm denoted by |. | .We will interpret the SPDE (1) in such a space 𝐻 . The objects 

𝒜 , 𝑥0 , 𝐹, 𝑊𝑡 , here are specified through the following assumptions. 

 

 Assumption 1: linear operator 𝒜. There exist sequence of real eigenvalues  0 ≤ 𝜆1 ≤ 𝜆2 ≤ ⋯ and eigenfunctions 
{𝑒𝑛}𝑛≥1 of 𝒜 such that the linear operator 𝐴: 𝐷(𝒜) ⊂ 𝐻 → 𝐻 is given by : 

𝒜𝑣 = ∑ −𝜆𝑛 < 𝑒𝑛, 𝑣)𝑒𝑛 ,

∞

𝑛=1

               (22) 

For all  

𝑣 ∈ 𝐷(𝐴)𝑤𝑖𝑡ℎ 𝐷(𝒜) = {𝑣 ∈ 𝐻| ∑ |𝜆𝑛|2| < 𝑒𝑛, 𝑣 > |2 < ∞

∞

𝑛=1

} 

Let 𝐷((−𝒜)𝑟) 𝑤𝑖𝑡ℎ 𝑟 ∈ ℝ  denote the interpolation space of the operator (−𝒜) ,[8]. 

 

Assumption 2: Cylindrical Brownian motion 𝑊𝑡 . there exist a sequence of 𝑞𝑛 ≥ 0 , 𝑛 ≥ 1 , of positive real numbers 

𝛾 ∈ (0,1) such that  

∑(𝜆𝑛)2𝛾−1

∞

𝑛=1

𝑞𝑛 < ∞                        (23) 

And independent real valued ℱ𝑡 − 𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 𝑚𝑜𝑡𝑖𝑜𝑛  𝛽𝑡
𝑛 , 𝑡 ≥ 0, 𝑛 ≥ 1 , i.e. each 𝛽𝑡

𝑛 is ℱ𝑡-adapted and the 

increments  𝛽𝑡+ℎ
𝑛 − 𝛽𝑡

𝑛 , ℎ > 0 , are independent of ℱ𝑡. Then the cylindrical Brownian motion  𝑊𝑡 is given by : 

𝑊𝑡(𝑥) = ∑ √𝑞𝑛𝑒𝑛(𝑥)𝛽𝑡
𝑛

∞

𝑛=1

            (24) 

Remark 1. The above series may not converge in 𝐻, but in some space 𝑈1 into which 𝐻 can be embedded, ([7] and 

[8]). In our example with the Laplace operator in one dimension, we will have 𝜆𝑛 = −𝜋2𝑛2  and 𝑞𝑛 ≡ 1 , 𝑓𝑜𝑟 𝑛 ≥ 1 

. This is the important case of space–time white noise. 

 

Assumption 3: nonlinearity 𝑓. The nonlinearity 𝑓: 𝐻 → 𝐻 is two times continuously differentiable, it and its 

derivatives satisfy  

|𝑓′(𝑥) − 𝑓′(𝑦)| ≤ 𝐿|𝑥 − 𝑦|,        |(−𝒜)(−𝑟)𝑓′(𝑥)(−𝒜)𝑟𝑣| ≤ 𝐿|𝑣| 

For all 𝑥, 𝑦 ∈ 𝐻 , 𝑣 ∈ 𝐷(−𝒜)𝑟  𝑎𝑛𝑑 𝑟 = 0,
1

2
, 1  and they satisfy  

|𝒜−1𝑓′′(𝑥)(𝑣, 𝑤)| ≤ 𝐿 |(−𝒜)−(
1

2
)𝑣| |(−𝒜)−(

1

2
)𝑤| , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣, 𝑤, 𝑥 ∈ 𝐻, 𝐿 > 0 

   

Remark 2. The function 𝑓 is usually given as a real-valued function of a real variable, but in the SPDE (1) it is 

considered as a function defined on 𝐻 and taking values in some function space such as a subspace of 𝐻. 

Assumption 4: initial value 𝑋0. The initial value 𝑋0is a 𝐷((−𝒜)𝑟) valued random variable, which satisfies 

𝐸|(−𝒜)−(
1

2
)𝑋0|4 < ∞                                               (25) 

where 𝛾 > 0 is given in assumption 2.2. 

With the above assumptions we get by [JK11] that  

 

𝑑𝑋𝑡 = [𝑘∆𝑋𝑡 + 𝑓(𝑥, 𝑥𝑡)]𝑑𝑡 + 𝑏(𝑥, 𝑋𝑡)𝑑𝑊𝑡(𝑥)      (26) 

 

With 
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𝑋0(𝑥) = 0   𝑎𝑛𝑑   𝑋𝑡(0) = 𝑋𝑡(1) = 0                       (27 ) 

𝑓𝑜𝑟 𝑥 ∈ (0,1), 𝑡 ∈ [0, 𝑇) has unique mild solution 

 

𝑋: [0, 𝑇] × Ω → 𝐻
𝛽+

1

2

                                                         (28) . 

 

A RELATED PARTIAL DIFFERENTIAL EQUATION  
We present in this section a transformation that enables us to work with a partial differential equation instead of the 

stochastic partial differential equation (5). This method is classical and it is known as the Doss-Sussmann transform 

when one applies it to stochastic differential equation ([7] and [8]). It is a useful trick that permits to rewrite a large 

class of one dimensional stochastic dynamic as a one dimensional random ordinary dynamic (by stochastic dynamic 

we mean stochastic differential equation or stochastic partial differential equation). It has been successfully used in 

[8] in which the authors have estimated the probability of finite-time blowup of positive solutions of stochastic partial 

differential equations with Dirichlet boundary condition.  

 

Doss-Susmann transform 

      The particular form of (5) will allow us to use a Doss-Susmann transform. We may write that ,[5]. 

𝑈(𝑡, 𝑥) = exp (∑ ∫ ℎ𝑙(𝑠)𝑑𝐵𝑠
𝑙

𝑡

0

𝑛

𝑙=1

) × 𝑣(𝑡, 𝑥)                                       (29) 

with 𝑣 that solves the partial differential equation 

𝑑𝑣(𝑡, 𝑥) = 𝒜𝑣(𝑡, 𝑥)𝑑𝑡 + (𝑐(𝑥) −
1

2
∑(ℎ𝑙(𝑡))

2
𝑛

𝑙=1

) 𝑣(𝑡, 𝑥)𝑑𝑡        (30) 

As regard to the expression of the function 𝑣, it is clear that 𝑣 can be simulated off-line. Indeed the coefficients in the 

above partial differential equation are 𝑐, (ℎ𝑙)1<𝑙<𝑛 and the coefficients of the Markov process 𝑋. They are all supposed 

to be known. Consequently, we can perform a wide number of computations related to the partial differential equation 

satisfied by 𝑣. Then we shall come back to the simulation of 𝑈 itself and we use as much as we want the previous 

computations. Thus we have split our scheme into a deterministic part (the approximation of 𝑣) and a stochastic part 

(the immediate computation of 𝑈 when one simulates the Brownian motion 𝐵). The approximation of 𝑣 and the 

Markov process 𝑋 will be achieved by a accelerated genetic algorithm . We have the following proposition. 

 

Proposition 3. Let 𝑢 be the solution of (5). Then the function 𝑣 defined almost-surely by 

𝑣(𝑡, 𝑥) = 𝑢(𝑡, 𝑥) 𝑒𝑥𝑝 (− ∑ ∫ ℎ𝑙(𝑠)𝑑𝐵𝑠
𝑙

𝑡

0

𝑛

𝑙=1

)                             (31) 

is the unique strong solution of the following parabolic partial differential equation 

𝑑𝑣(𝑡, 𝑥) = 𝒜𝑣(𝑡, 𝑥)𝑑𝑡 + (𝑐(𝑥) −
1

2
∑(ℎ𝑙(𝑡))

2
𝑛

𝑙=1

) 𝑣(𝑡, 𝑥)𝑑𝑡      (32) 

0 ≤ 𝑡 ≤ 𝑇 , The above equation is understood trajectory wise since it is valid for almost-all 𝜔. 

Proof. We denote 𝐸 = (𝐸𝑡)0≤𝑡≤𝑇 the process defined by  

𝐸𝑡 = 𝑒𝑥𝑝 (− ∑ ∫ ℎ𝑙(𝑠)𝑑𝐵𝑠
𝑙

𝑡

0

𝑛

𝑙=1

)                                                      (33) 

It is a semi-martingale with the decomposition 

𝐸𝑡 = 1 − ∑ ∫ ℎ𝑙(𝑠)𝐸𝑠𝑑𝐵𝑠
𝑙

𝑡

0

𝑛

𝑙=1

+
1

2
∑ ∫ (ℎ𝑙(𝑠))2𝐸𝑠𝑑𝑠

𝑡

0

𝑛

𝑙=1

                                     (34) 

In view of (1), for all 𝑥 ∈ 𝑅𝑑, (𝑢(𝑡, 𝑥))0≤𝑡≤𝑇  is a semi-martingale and we have  

〈𝐸, 𝑢(. , 𝑥)〉 = − ∑ ∫ (ℎ𝑙(𝑠))
2

𝐸𝑠𝑢(𝑠, 𝑥)𝑑𝑠
𝑡

0

𝑛

𝑙=1

= − ∑ ∫ (ℎ𝑙(𝑠))
2

𝑣(𝑠, 𝑥)𝑑𝑠
𝑡

0

𝑛

𝑙=1

    (35) 
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Since 𝐸𝑡  does not depend on the space variable x, it holds that 

𝐸𝑡𝒜𝑢(𝑡, 𝑥) = 𝒜(𝐸𝑡𝑢(𝑡, 𝑥)) = 𝒜𝑣(𝑡, 𝑥) 

and the integration by parts formula yields the result. 

                                                                                                                        ■ 
ACCELERATED GENETIC ALGORITHM 
The principles of genetic algorithm are discussed in previous paper [9]. Where the components of the genetic 

algorithm, ,[10],[11],[12]are : 

 

1.  Initialization 
The value of mutation rate and selection rate are stated ,[9]. The initialization of every chromosome is 

performed by randomly selecting an integer for every element of the corresponding vector. 

 

2.  Fitness-evaluation 
Expressing  the Partial differential equation in the following form: 

𝑓 (𝑥, 𝑦,
𝜕𝑢

𝜕𝑥
(𝑥, 𝑦),

𝜕𝑢

𝜕𝑦
(𝑥, 𝑦),

𝜕2𝑢

𝜕𝑥2
(𝑥, 𝑦),

𝜕2𝑢

𝜕𝑦2
(𝑥, 𝑦)) = 0      (36 ) 

 𝑥 ∈ [𝑥0, 𝑥1]   ,   𝑦 ∈ [𝑦0, 𝑦1] 
 

The associated  boundary conditions are expressed as: 

         𝑢(𝑥0 , 𝑦) = 𝑓0(𝑦)    , 𝑢(𝑥1 , 𝑦) = 𝑓1(𝑦)    ,    𝑢(𝑥 , 𝑦0) = 𝑔0(𝑦)      ,   𝑢(𝑥 , 𝑦1) = 𝑔1(𝑦)   (37 ) 

 

The steps for the fitness evaluation of the population are the following: 

 

1. Choose 𝑁2 equidistant points in the box  [𝑥0, 𝑥1] × [𝑦0 , 𝑦1]  , 𝑁𝑥 equidistant points on the boundary at 𝑥 =
 𝑥0 and at 𝑥 =  𝑥1 , 𝑁𝑦  equidistant points on the boundary at  𝑦 =  𝑦0 and at  𝑦 =  𝑦1 

2. For every chromosome 𝑖 : 
(i)  Construct the corresponding model 𝑀𝑖(𝑥 , 𝑦), expressed in the grammar described earlier. 

(ii)  Calculate the quantity 

𝐸(𝑀𝑖) = ∑ (𝑓(𝑥𝑗 , 𝑦𝑗 ,
𝜕

𝜕𝑥
𝑀𝑖(𝑥𝑗 , 𝑦𝑗),

𝜕

𝜕𝑦
𝑀𝑖(𝑥𝑗 , 𝑦𝑗),

𝜕2

𝜕𝑥2 𝑀𝑖(𝑥𝑗 , 𝑦𝑗),
𝜕2

𝜕𝑦2 𝑀𝑖(𝑥𝑗 , 𝑦𝑗))2𝑁2

𝑗=0  (38)  

(iii)  Calculate an associated penalty 𝑃𝑖(𝑀𝑖) . The penalty function 𝑃 depends on the boundary conditions and it has 

the form: 

𝑃1(𝑀𝑖) = ∑ (𝑀𝑖(𝑥0, 𝑦𝑗) − 𝑓0(𝑦𝑗))2𝑁𝑥
𝑗=1    

𝑃2(𝑀𝑖) = ∑ (𝑀𝑖(𝑥1, 𝑦𝑗) − 𝑓1(𝑦𝑗))2𝑁𝑥
𝑗=1                                         (39) 

𝑃3(𝑀𝑖) = ∑ (𝑀𝑖(𝑥𝑗 , 𝑦0) − 𝑔0(𝑥𝑗))2𝑁𝑦

𝑗=1
  

𝑃4(𝑀𝑖) = ∑ (𝑀𝑖(𝑥𝑗 , 𝑦1) − 𝑔1(𝑥𝑗))2𝑁𝑦

𝑗=1
  

 

 (iiii)  Calculate the fitness value of the chromosome as: 

𝑣𝑖 = 𝐸(𝑀𝑖) + 𝑃1(𝑀𝑖) + 𝑃2(𝑀𝑖) + 𝑃3(𝑀𝑖) + 𝑃4(𝑀𝑖)                  (40)       
 

3.   Genetic operators 

The genetic operators that are applied to the genetic population are the initialization, the crossover and the mutation. 

A random integer of each chromosome was selected to be in the range [0..255] . The parents are selected via 

tournament selection, i.e. : 

- First, create a groups of  𝐾 ≥  2 randomly selected individuals from the current population. 

- The individuals with the best fitness in the group is selected, the others are discarded. 

 

The final genetic operator used is the mutation, where for every element in a chromosome a random number in the 

range [0 , 1] is chosen,[9].  
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4.  Termination control 

Creating new generation required for application genetic operators to the population in order to find the best 

chromosome having better fitness or whenever the maximum number of generations was obtained.          

 

5. Technical of the Accelerated Method   

To make  the method is faster to arrived the exact solution of the partial differential equations by the following : 

1- Insert the boundary conditions of the partial differential equation as a part of chromosomes in the our population 

of the problem, the algorithm gives the exact solution or numerical approximation  solution in a few generations. 

2- Insert a part of exact solution ( or particular solution ) as a part of a chromosome in the population, find the 

algorithm that gives an exact solution  in a few  generations.  

3- Insert the vector of exact solution ( if exist ) as a chromosome  in the our population of the problem, the algorithm 

gives the exact solution in the first generation. 

 

APPLICATION OF THE ACCELERATED GENETIC ALGORITHM  
In this section we applied our algorithm on some SPDEs driven by cylindrical Brownian motion with additive and 

multiplicative cases. 

  

1. Stochastic Partial differential equations with additive noise. 

We first look at SPDEs with additive noise to get a reference about how well the earlier presented method work. We 

consider the stochastic heat equation with additive space–time white noise on the one-dimensional domain [0,1] over 

the time interval [0, 𝑇] with 𝑇 = 1. 

Consider the following SPDE  

𝑑𝑋𝑡(𝑥) = [𝜅∆𝑋𝑡(𝑥) +  𝑓 (𝑥, 𝑋𝑡(𝑥))]𝑑𝑡 +  𝑏(𝑥, 𝑋𝑡(𝑥))𝑑𝑊𝑡(𝑥)      (41) 

with  𝑋0(𝑥) = 0  𝑎𝑛𝑑  𝑋𝑡(0) = 𝑋𝑡(1) = 0   𝑓𝑜𝑟   𝑥 ∈ (0,1), 𝑡 ∈ [0, 𝑇) . 

 and  𝑓(𝑥, 𝑦)  = 0 , 𝑏(𝑥, 𝑦)  =  1 , where the noise 𝑊𝑡(𝑥) here is the space-time white noise wiener process  

𝑊𝑡(𝑥) = ∑ 𝑒𝑛(𝑥)𝛽𝑡
𝑛

∞

𝑛=1

                                                       

with 𝑞 ≡ 1 for all 𝑛 ≥ 1 in view of assumption 2.2. (The summation here is just 

formal, it does not converge in 𝐻.) Therefore, we have  𝛾 = (
1

4
) − 𝜀 ,with an arbitrary small 𝜀 > 0 in our situation. 

Then the SPDE   

𝑑𝑋𝑡(𝑥) = [𝜅∆𝑋𝑡(𝑥) ]𝑑𝑡 +  𝑑𝑊𝑡(𝑥)                (42) 

 

has unique mild solution  𝑋: [0, 𝑇] × Ω → 𝐻
𝛽+

1

2

 . where described in [Kru12] can be written as 

𝑋𝑡 = ∫ 𝑒 𝒜(𝑡−𝑠)𝑑𝑊𝑠

𝑡

0

=  ∑ 𝑒𝑛 ∫ 𝑒−𝜆𝑛(𝑡−𝑠)𝑑𝛽𝑠

𝑡

0

∞

𝑛=1

 (43) 

   where we use the eigenvalues 

𝜆𝑛 = 𝑛2𝜋2                                                              (44) 
and eigenvectors  

𝑒𝑛(𝑥) = √2 sin(𝑛𝜋𝑥)                                        (45)  

for all 𝑛 ≥ 1 of the operator 𝒜 . 

 

Example 1   Let we try to find the numerical solution of the SPDE with additive noise. 

𝑑𝑈𝑡(𝑥) = [
𝜕2𝑈(𝑡, 𝑥)

𝑑𝑥2
] 𝑑𝑡 + 𝑑𝑊𝑡(𝑥)                (46) 

With 

𝑈0(𝑥) = 0      𝑎𝑛𝑑      𝑈𝑡(0) = 𝑈𝑡(1) = 0       (47 ) 

 𝑓𝑜𝑟 𝑥 ∈ (0,1), 𝑡 ∈ [0, 𝑇] where 𝑊𝑡(𝑥) is space-time white noise wiener process. 

 

By using  Doss-Susmann transform (30). We find 
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𝑑𝑣(𝑡, 𝑥) =
𝜕2𝑣

𝜕𝑥2
(𝑡, 𝑥)𝑑𝑡 + (0 −

1

2
∑(ℎ𝑙(𝑡))

2
𝑛

𝑙=1

) 𝑣(𝑡, 𝑥)𝑑𝑡        (48) 

with   

𝒜𝑈 =
1

2
∑ 𝑎𝑖𝑗

𝜕2𝑈

𝜕𝑥𝑖𝜕𝑥𝑗

𝑑

𝑖,𝑗=1

+ ∑ 𝑏𝑖

𝜕𝑈

𝜕𝑥𝑖

𝑑

𝑖=1

= ∑
𝜕2𝑈

𝜕𝑥𝑖𝜕𝑥𝑗

1

𝑖,𝑗=1

+ ∑ 0
𝜕𝑈

𝜕𝑥𝑖

1

𝑖=1

=
𝜕2𝑈

𝜕𝑥2
     (49) 

 

Then   𝑏(𝑋𝑡) = 0 𝑎𝑛𝑑  𝜎𝑖𝑗 = √2   ,and the Markov process 𝑋 was governed by the operator 𝒜 of this stochastic partial 

differential equation is: 

𝑋𝑡 = 𝑥0 + ∫ √2

𝑡

0

𝑑𝐵𝑠   , 0 ≤ 𝑡 ≤ 𝑇                   (50) 

where the initial condition 𝑥0 in ℝ𝒅 . if ℎ(𝑡) = 1 and 𝑛 = 1, then (48 ) became : 

𝑑𝑣(𝑡, 𝑥)

𝑑𝑡
=

𝜕2𝑣

𝜕𝑥2
(𝑡, 𝑥) −

1

2
𝑣(𝑡, 𝑥)                  (51) 

With  𝑣0(𝑥) = 0 𝑎𝑛𝑑 𝑣𝑡(0) = 𝑣𝑡(1) = 0 𝑓𝑜𝑟 𝑥 ∈ (0,1), 𝑡 ∈ [0, 𝑇) 

Now find the numerical solution of the partial differential equation (PDE)(51) by using an accelerated genetic 

algorithm. We found that 

𝐺𝑝(𝑡, 𝑥) = exp (−
3

2
𝑡) 𝑠𝑖𝑛𝑥                            (52)  

And the solution of the stochastic ordinary differential equation (50) (Markov process) generated by the infinitesimal 

generator 𝐴 by accelerated genetic algorithm is : 

𝑋𝑡 = 𝑥0 + √2𝐵(𝑡)                                         (53) 
Then , the solution of the original equation (46) is obtained by substituting (52),(53) in equation (29): 

𝑈(𝑡, 𝑥) = exp (∑ ∫ ℎ𝑙(𝑠)𝑑𝐵𝑠
𝑙

1

0

𝑛

𝑙=1

) × 𝐺𝑃(𝑡, 𝑋𝑡) =  exp (∑ ∫ ℎ𝑙(𝑠)𝑑𝐵𝑠
𝑙

1

0

𝑛

𝑙=1

) × exp (−
3

2
𝑡) sin (𝑥0 + √2𝐵(𝑡))     (54) 

Fig.1 shown this solution 

 

 
Fig.1 solution of SPDE (46) 

 

and then compared this solution by our method  with the solution obtained by Saul'yev method ,[13]. And with its 

corresponding deterministic solution. (In this problem and other test examples, by a deterministic solution we mean 

the numerical solution of the unperturbed problems). This comparison shown in Fig. 2 below :  
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Fig.2 comparison of solutions of SPDE (46) 

 

2. Stochastic Partial differential equations with multiplicative noise. 
Look at SPDEs with multiplicative  noise to get a reference about how well the earlier presented method work. We 

consider the stochastic heat equation with multiplicative space–time white noise on the one-dimensional domain [0,1] 
over the time interval [0, 𝑇] with 𝑇 = 1. 

 

Example 2  Let us try to find the numerical solution of the SPDE with multiplicative noise. 

Consider the SPDE 

𝑑𝑈𝑡 = 𝜅Δ𝑈𝑡(𝑥)𝑑𝑡 + 𝑈𝑡(𝑥)𝑑𝑊𝑡(𝑥)                                           ( 55) 

With 

𝑈0(𝑥) = 𝑥2(1 − sin (
𝜋

2
𝑥)

2

)  𝑎𝑛𝑑   𝑈𝑡(0) = 𝑈𝑡(1) = 0           (56) 

𝑓𝑜𝑟 𝑥 ∈ (0,1), 𝑡 ∈ [0, 𝑇) where 𝑊𝑡(𝑥) is space-time white noise wiener process . where 𝜅 is a small parameter, we 

will have 𝜅 =
1

100
 . By using  Doss-Susmann transform (30) . We find 

𝑑𝑣(𝑡, 𝑥) =
𝜕2𝑣

𝜕𝑥2
(𝑡, 𝑥)𝑑𝑡 + (0 −

1

2
∑(ℎ𝑙(𝑡))

2
𝑛

𝑙=1

) 𝑣(𝑡, 𝑥)𝑑𝑡         (57) 

With 

𝒜𝑈 =
1

2
∑ 𝑎𝑖𝑗

𝜕2𝑈

𝜕𝑥𝑖𝜕𝑥𝑗

𝑑

𝑖,𝑗=1

+ ∑ 𝑏𝑖

𝜕𝑈

𝜕𝑥𝑖

𝑑

𝑖=1

= ∑
1

100

𝜕2𝑈

𝜕𝑥𝑖𝜕𝑥𝑗

1

𝑖,𝑗=1

+ ∑ 0
𝜕𝑈

𝜕𝑥𝑖

1

𝑖=1

=
1

100

𝜕2𝑈

𝜕𝑥2
    (58) 

Then   𝑏(𝑋𝑡) = 0 𝑎𝑛𝑑  𝜎𝑖𝑗 = √0.02   ,and the Markov process 𝑋 was governed by the infinitesimal generator of  this 

stochastic differential equation 𝒜 is: 

𝑋𝑡 = 𝑥0 + ∫ √0.02

𝑡

0

𝑑𝐵𝑠    , 0 ≤ 𝑡 ≤ 𝑇                                      (59) 

where the initial condition 𝑥0 in ℝ𝒅 . if ℎ(𝑡) = 1 and 𝑛 = 1, then (57) became : 

 

𝑑𝑣(𝑡, 𝑥)

𝑑𝑡
= 0.01

𝜕2𝑣

𝜕𝑥2
(𝑡, 𝑥) −

1

2
𝑣(𝑡, 𝑥)                                    (60) 

With 

𝑣0(𝑥) = 𝑥2(1 − sin (
𝜋

2
𝑥)

2

)   𝑎𝑛𝑑 𝑣𝑡(0) = 𝑣𝑡(1) = 0         (61) 

 𝑓𝑜𝑟 𝑥 ∈ (0,1), 𝑡 ∈ [0, 𝑇). 

Now find the numerical solution of the partial differential equation (PDE)(60) by using accelerated genetic algorithm. 

We found that at generation 26, the numerical solution is: 

 

𝐺𝑝26(𝑡, 𝑥) = 2𝑒−𝑡𝑠𝑖𝑛 (3𝑥2)                                                     (62)  
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and the solution of the stochastic ordinary differential equation (59) (Markov process) generated by the infinitesimal 

generator 𝒜 by accelerated genetic algorithm is : 

𝑋𝑡 = 𝑥0 + √0.02𝐵(𝑡)                                           (63)  
Then , the solution of the original equation (55) is obtained by substituting (62),(63) in equation (29) , we find : 

𝑈(𝑡, 𝑥) = 𝑒𝑊𝑡(𝑥) × 𝐺𝑃26(𝑡, 𝑋𝑡) =  𝑒𝑊𝑡(𝑥) × 2𝑒−𝑡 𝑠𝑖𝑛(3(𝑥0 + √0.02𝐵(𝑡))2)     (64) 

 

Fig.3 show this solution 

 

 
Fig.3 The solution of SPDE (55 ) 

 

and then compared this solution by our method  with the solution obtained by Saul'yev method and with its 

corresponding deterministic solution. This comparison shown in  Fig. 4 below : 

 

 
Fig.4 comparison of solutions of SPDE (55) 

 

The comparisons of errors of these solutions was shown in table (4.1). 
 

Table (4.1) Comparisons of the errors. 

t x |saul'yev-Gp26| |ditermenistic-Gp26| 

0 0 0 0 

0.1 0.1 0.01575 0.01653 

0.2 0.2 0.04425 0.04100 

0.3 0.3 0.06718 0.04256 

0.4 0.4 0.09982 0.09902 

0.5 0.5 0.12078 0.12041 

0.6 0.6 0.14600 0.12727 

0.7 0.7 0.15877 0.11709 
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0.8 0.8 0.08448 0.16523 

0.9 0.9 0.08089 0.08428 

1 1 0 0 

 

Example 3  Let we try to find the approximation solution of the SPDE with multiplicative noise. 

𝑑𝑈𝑡(𝑥) = 𝜅Δ𝑈𝑡(𝑥)𝑑𝑡 − 𝑈𝑡(𝑥)𝑑𝑊𝑡(𝑥)                                          ( 65) 

With  

𝑈0(𝑥) = 𝑥2(1 − 𝑥2)  𝑎𝑛𝑑    𝑈𝑡(0) = 𝑈𝑡(1) = 0                          (66) 

𝑓𝑜𝑟 𝑥 ∈ (0,1), 𝑡 ∈ [0, 𝑇) ,where 𝑊𝑡(𝑥) is space-time white noise wiener process, and where 𝜅 is a small parameter, 

we will have 𝜅 =
1

1000
 . 

By using  Doss-Susmann transform (30). We find 

𝑑𝑣(𝑡, 𝑥) = 0.001
𝜕2𝑣

𝜕𝑥2
(𝑡, 𝑥)𝑑𝑡 + (0 −

1

2
∑(ℎ𝑙(𝑡))

2
𝑛

𝑙=1

) 𝑣(𝑡, 𝑥)𝑑𝑡        (67) 

With 

𝒜𝑈 =
1

2
∑ 𝑎𝑖𝑗

𝜕2𝑈

𝜕𝑥𝑖𝜕𝑥𝑗

𝑑

𝑖,𝑗=1

+ ∑ 𝑏𝑖

𝜕𝑈

𝜕𝑥𝑖

𝑑

𝑖=1

= ∑
1

1000

𝜕2𝑈

𝜕𝑥𝑖𝜕𝑥𝑗

1

𝑖,𝑗=1

+ ∑ 0
𝜕𝑈

𝜕𝑥𝑖

1

𝑖=1

=
1

1000

𝜕2𝑈

𝜕𝑥2
    (68) 

 

Then   𝑏(𝑋𝑡) = 0 𝑎𝑛𝑑  𝜎𝑖𝑗 = √0.002   ,and the Markov process 𝑋 was governed by the infinitesimal generator 𝐴 of 

this stochastic differential equation is: 

𝑋𝑡 = 𝑥0 + ∫ √0.002

𝑡

0

𝑑𝐵𝑠   , 0 ≤ 𝑡 ≤ 𝑇                                 (69) 

where the initial condition 𝑥0 in ℝ𝒅 . if ℎ(𝑡) = 1 and 𝑛 = 1 then (67) becomes : 

𝑑𝑣(𝑡, 𝑥)

𝑑𝑡
= 0.001

𝜕2𝑣

𝜕𝑥2
(𝑡, 𝑥) +

1

2
𝑣(𝑡, 𝑥)                              (70) 

With  

𝑣0(𝑥) = 𝑥2(1 − 𝑥2)   𝑎𝑛𝑑   𝑣𝑡(0) = 𝑣𝑡(1) = 0               (71) 

𝑓𝑜𝑟 𝑥 ∈ (0,1), 𝑡 ∈ [0, 𝑇) 
Now find the numerical solution of the partial differential equation (PDE)(65) by using accelerated genetic algorithm. 

We found at generation 10  that : 

 

𝐺𝑝10(𝑡, 𝑥) = 2𝑒𝑥𝑝(− 2𝑒𝑥𝑝(𝑡)) 𝑠𝑖𝑛𝑥2                                      (72)  
 

And the solution of the stochastic ordinary differential equation (69) (Markov process) generated by the infinitesimal 

generator 𝒜 by accelerated genetic algorithm is : 

𝑋𝑡 = 𝑥0 + √2𝐵(𝑡)                                                              (73) 

Then , the solution of the original equation (65) is obtained by substituting (72),(73) in equation (29): 

 

𝑈(𝑡, 𝑥) = 𝑒𝑊𝑡(𝑥) × 𝐺𝑝10(𝑡, 𝑋𝑡) =  𝑒𝑊𝑡(𝑥) × 2exp(−2 exp(𝑡)) sin (𝑥0 + √0.002𝐵(𝑡))
2

               (74) 

Fig.5 show this solution 
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Fig.5 solution of SPDE (65 ) 

 

And then compared this solution by our method  with the solution obtained by Saul'yev method and with its 

corresponding deterministic solution. This comparison shown in  

Fig. 6 below : 

 

 
Fig.6 comparison of solutions of SPDE (65) 

 

The comparisons of errors of these solutions was shown in table (4.2). 
 

Table (4.2) Comparisons of the errors. 

t x |saul'yev-Gp10| |ditermenistic-Gp10| 

0 0 0 0 

0.1 0.1 0.00061 0.00131 

0.2 0.2 0.00249 0.01378 

0.3 0.3 0.04720 0.04396 

0.4 0.4 0.09117 0.08608 

0.5 0.5 0.14238 0.13393 

0.6 0.6 0.03907 0.17049 

0.7 0.7 0.22878 0.20517 

0.8 0.8 0.22330 0.19364 

0.9 0.9 0.15338 0.12285 

1 1 0 0 

 
CONCLUSIONS 
Application of a new technique  for solving stochastic partial  differential equations. Such as applied of accelerated 

genetic algorithm (AGA) to find the numerical solutions of stochastic partial differential equations with additive and 

multiplicative cylindrical Brownian motion ( or space-time white noise ) , using Doss-Susmann transformation , to 

transform these equation into partial differential equations and stochastic ordinary differential equation , then applied 

the AGA to find the numerical solutions of transformed equations and then the solution of original equations. We 
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noted that this method has general utility for applications , and we found that insertion of boundary condition as a 

chromosomes  in the population quick the algorithm to approximate the numerical solutions.  
 

In order to compare the results that have been obtained by using accelerated genetic algorithm , validating, it has 

comparison with some numerical methods (such as finite difference method and the saul'yev method), where these 

methods are used to solve this kind of stochastic partial differential equations and it's always convergence. It turns out 

that the results that have been obtained by using accelerated genetic algorithm are good results and convergence with 

these methods. 

 

The main problem that we faced during the application of the (AGA) to find numerical solutions of stochastic 

differential equations , are noise-generating process, such as (Brownian motion or cylindrical Brownian motion ). 

Where the values of the noise  must be normally distributed with zero mean and variance equal to 𝑑𝑡 i.e. 𝑁(0, 𝑑𝑡). To 

achieve this value of 𝑑𝑡 must be very small change so that we get the largest number of values within the specified 

interval , these issues that affect on the shape and distribution of the noise and shows its influence is clear in the final 

solutions. 
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